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Figure 4. Solitary wave traveling into a reservoir
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Side Channels

A series of numerical experiments was conducted to assess the influence within
secondary channels of forces generated by a vessel navigating the main channel.
Geometric and hydraulic parameters used to describe the features of ariver side
channel are shown in Figure 5. Dimensional analysis of the representative terms /,
L,B,b,D,d,V,andv |leads to the geometric ratios L//, B/b, and D/d. Here, B/b and
D/d describe across section and /I describesthe isand length. Appropriate values
of these descriptive ratios were determined from the Upper Mississippi River Data-
base for Pool 8. Island lengths (Z/7) vary from 3.6 to 10, so arange of island-to-
vessal length ratios of 2 to 10 were modeled. Secondary channel widths (b/B) were
found to vary only between 0.2 and 0.3, so the secondary-channel-to-main-channel
width ratio was held constant at 0.25. Secondary channel depths (d/D) vary from
0.41t00.9. A range of main channel depth from 1 to 3 times the secondary channel
depth was simulated.

The main channel cross section for these experiments was similar to that found
at Kampsville (Plate 3). Specificaly, the main channel was 306.48 m wide with a
maximum depth of 4.67 m. The thalweg was located 125.54 m from the right bank.
The sailing line was 1.5 m left of the thalweg.

The vessel configuration was 297.2 m long by 32.0 m wide, drafted at 2.74 m.
This represented a 3-wide by 5-long barge train. The tow traveled at 2.9 m/sec.

/\{ A Ambient conditions for each test were
still water since vessel effects on the

flow field are the interest in this study.
1 v(xy.t) o The model parameters used for these

' ! 5 experiments are provided in the follow-
[ ing tabulation. Each simulation accel-
Ty Lo CHARNEL & erated the vessal from rest to terminal
. speed (2.9 m/sec) in about 10.3 sec.

BARGE TRAIN

e

v Tt
RN
AR RN

. v e
.

. BANKLINE L°. L°.
- / - Z'*SL”‘ND e Schematics of the various geome-

tries modeled and the corresponding

time-histories of drawdown and current

/\ 4/\/ [+ changes in the main channel and at the
inlet, middle, and outlet of the secondary

8 I channel are shown in Plates 30-109.
The zero abscissais the time at which

a. Plan view the bow of the vessal reaches the x-

coordinate of the node plotted. The x-
component of velocity is positive in the

direction of the travel of the boat. The
y velocity component is positiveif it is
directed into the side channdl. At the

b. Cross section entrance, the y velocity components are

. . indicators of flow into the side channels.
Geometric and hydraulic

parameters describing side
channels
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Model Parameter Value
g, m/sec’ 9.81

n 0.025
(o} 0.1

A, m/sec? 0.2828
T, sec 10.2552
b 0.25

a 15

Dt, sec 5.128

The x-component is simply the return currents produced by the vessel. This discus-
sion will focus on flow in the side channel rather than the return currents.

Side channels behave somewhat differently from backwaters. The depression
caused by the vessel will depress the water surface at the side channel entrance ini-
tially, but thereafter, the entrance behaves like areservair, i.e., the water surface
remains fixed. Infact, both ends of the side channel are reservoirs. So theinitial
depression pulse will travel to the opposite end of the side channel whereit will be
negatively reflected and return as a positive wave. When this positive wave reaches
the original end, it will be negatively reflected again and return as adepression. A
complete cycle has a period of approximately 2L/(gH)". Notethat at all timesthe
velocity pulse is directed toward the entrance where the vessel originally passed.
Velocities at the ends of the side channegls are amplified and so are typically larger
than the vel ocities within the side channels. The vessel will continue to move along
theriver, passing the other inlet of the side channel. The velocity pulse produced at
thisinlet will tend to cancel those generated when the vessel passed thefirst inlet to
the side channel. So in many of these examples one will see afairly regular
vel ocity-wave pattern until the vessal has time to reach the opposite channel end. At
this point the velocity wave magnitude will reduce and appear to have shorter wave
periods.

Backwaters

Backwater parameters are displayed in Figure 6. The backwater plan shape was
represented as a straight channgl. Dimensionless parameters include the width of
the channel into the backwater area (b/B), the measure of the backwater arealength
(L/1), and the measure of the backwater area depth (d/D). Two backwater-to-vessel
length ratios (Z// = 1 and 10) were examined. Two different backwater entrance
widths were simulated. The main-channel-to-backwater entrance width ratios (B/b)
of 2 and 10 were smulated. Main-channel-to-backwater-depth ratios (D/d) were
varied from 1 to 4. Sketches of these geometries followed by the corresponding
time-histories of the drawdown and currents generated by the vessel passage are
shown in Plates 110-133. The main channel stations are located in the main channel
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Figure 6. Geometric and hydraulic parameters describing backwaters

adjacent to theisland center at a point one-half the distance from the sailing line to
theidand.

The depression caused by this vessel-generated pulse in a backwater initially
causes a pulse of flow from the backwater channel into the main stem. This depres-
sion travels upstream until it is reflected off the closed end of the backwater. The
reflected pulseis a depression, but the velocity is now directed into the backwater,
toward the closed end. Thisreflected wave will then travel to the main stem. When
the wave reaches the main stem, the junction of the main stem and backwater
behaves like areservoir so that the water surface will remain a constant but the
velocitieswill be amplified. In some cases, the results will show larger vel ocity
magnitudes at this point than from the initial drawdown velocity. So the reflection
at the junction of the main stem and the backwater represents an overshoot in which
the reflection of the depression wave is a positive wave traveling back into the

Chapter 5 Screening Cases
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backwater. A complete cycle requires the wave to travel the length of the backwater
channel four times. Thisisaperiod of 4L/(gH)"?, where L is the channel length.
The sum of the wave and its reflection produces a standing wave in the backwater.
Here the water surface through the backwater will rise and fall in phase. The veloc-
ity will be out of phase with the water-surface wave. Thisisapparent in the plates
for the backwater with length L// =1. Thelargest velocity amplitudeisfound at the
entrance, and the largest water-surface amplitudeis at the closed end of the
backwater.
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6 Discussion and
Conclusions

Discussion

The numerical modd is an effective tool for quantifying the flow conditionsin a
navigation channel due to amoving tow traveling a predetermined sailing line.
Vel ocities and water-surface fluctuations cal culated using the depth-averaged flow
equations provide a detailed determination of the magnitude and distribution of the
flow field. Time-history comparisons capture the magnitude, flow reversals, and
timing of these phenomena.

Advantages of this method over traditional one-dimensional analytical
approaches for the quantification of tow-induced current and drawdown are many.
Solution of the energy and continuity equations, as presented by Jansen and Schijf
(1953), provides only a cross-sectional average return current and drawdown at
midship in auniform channel. The numerical model generates wave movement and
gradientsin two dimensionsin a channel of arbitrary shape. The numerical model
can be used to evaluate scenarios that are difficult to measurein thefidld orina
physical model. These scenarios include two tows passing and tows navigating
channel bends. Finally, the numerical model provides visualization products that
enable understanding of the complicated effects produced by vessels movingin a
navigation channdl.

Conclusions

The moddl islimited to flows that are adequately described by the shallow-
water equations; that is, three-dimensional flow near the vessel, where the vertical
accelerations are significant, is not simulated. Vertical acceleration beneath the bow
and stern may be so great that the shallow-water model is not applicable to the flow
beneath the vessal. Another limitation of shallow-water modelsisthat they cannot
simulate short-period waves composing the divergent and stern wave field produced
by amoving vessel. Also, no attempt has been made to reproduce the effects of a
towboat propeller jet.

Chapter 6 Discussion and Conclusions
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The shallow-water equations coupled with amoving pressure field representing
the displacement of avessel effectively model the far-field (area greater than about
2to 2.5 vessdl widths from the sailing line) currents and drawdown produced by a
tow in anirregular channd section. The results of the "blind" tests comparing the
physical model and prototype measurements to the numerical model calculations
support this conclusion.

Chapter 6 Discussion and Conclusions
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